Project

General

Profile

Download (31.2 KB) Statistics
| Branch: | Tag: | Revision:
1
open Format
2

    
3
open Machine_code_types
4
open Lustre_types
5
open Corelang
6
open Machine_code_common
7

    
8
(** Exception for unsupported features in Ada backend **)
9
exception Ada_not_supported of string
10

    
11
(** All the pretty print and aux functions common to the ada backend **)
12

    
13
(* Misc pretty print functions *)
14

    
15
let is_machine_statefull m = not m.mname.node_dec_stateless
16

    
17
(*TODO Check all this function with unit test, improve this system and
18
   add support for : "cbrt", "erf", "log10", "pow", "atan2".
19
*)
20
let ada_supported_funs =
21
  [("sqrt",  ("Ada.Numerics.Elementary_Functions", "Sqrt"));
22
   ("log",   ("Ada.Numerics.Elementary_Functions", "Log"));
23
   ("exp",   ("Ada.Numerics.Elementary_Functions", "Exp"));
24
   ("pow",   ("Ada.Numerics.Elementary_Functions", "**"));
25
   ("sin",   ("Ada.Numerics.Elementary_Functions", "Sin"));
26
   ("cos",   ("Ada.Numerics.Elementary_Functions", "Cos"));
27
   ("tan",   ("Ada.Numerics.Elementary_Functions", "Tan"));
28
   ("asin",  ("Ada.Numerics.Elementary_Functions", "Arcsin"));
29
   ("acos",  ("Ada.Numerics.Elementary_Functions", "Arccos"));
30
   ("atan",  ("Ada.Numerics.Elementary_Functions", "Arctan"));
31
   ("sinh",  ("Ada.Numerics.Elementary_Functions", "Sinh"));
32
   ("cosh",  ("Ada.Numerics.Elementary_Functions", "Cosh"));
33
   ("tanh",  ("Ada.Numerics.Elementary_Functions", "Tanh"));
34
   ("asinh", ("Ada.Numerics.Elementary_Functions", "Arcsinh"));
35
   ("acosh", ("Ada.Numerics.Elementary_Functions", "Arccosh"));
36
   ("atanh", ("Ada.Numerics.Elementary_Functions", "Arctanh"));
37
   
38
   ("ceil",  ("", "Float'Ceiling"));
39
   ("floor", ("", "Float'Floor"));
40
   ("fmod",  ("", "Float'Remainder"));
41
   ("round", ("", "Float'Rounding"));
42
   ("trunc", ("", "Float'Truncation"));
43

    
44
   ("fabs", ("", "abs"));]
45

    
46
let is_builtin_fun ident =
47
  List.mem ident Basic_library.internal_funs ||
48
    List.mem_assoc ident ada_supported_funs
49

    
50
(** Print a cleaned an identifier for ada exportation : Ada names must not start by an
51
    underscore and must not contain a double underscore
52
   @param var name to be cleaned*)
53
let pp_clean_ada_identifier fmt name =
54
  let reserved_words = ["abort"; "else"; "new"; "return"; "boolean"; "integer";
55
                        "abs"; "elsif"; "not"; "reverse"; "abstract"; "end";
56
                        "null"; "accept"; "entry"; "select"; "access";
57
                        "exception"; "of"; "separate"; "aliased"; "exit";
58
                        "or"; "some"; "all"; "others"; "subtype"; "and";
59
                        "for"; "out"; "synchronized"; "array"; "function";
60
                        "overriding"; "at"; "tagged"; "generic"; "package";
61
                        "task"; "begin"; "goto"; "pragma"; "terminate";
62
                        "body"; "private"; "then"; "if"; "procedure"; "type";
63
                        "case"; "in"; "protected"; "constant"; "interface";
64
                        "until"; "is"; "raise"; "use"; "declare"; "	range";
65
                        "delay"; "limited"; "record"; "when"; "delta"; "loop";
66
                        "rem"; "while"; "digits"; "renames"; "with"; "do";
67
                        "mod"; "requeue"; "xor"; "float"] in
68
  let base_size = String.length name in
69
  assert(base_size > 0);
70
  let rec remove_double_underscore s = function
71
    | i when i == String.length s - 1 -> s
72
    | i when String.get s i == '_' && String.get s (i+1) == '_' ->
73
        remove_double_underscore (sprintf "%s%s" (String.sub s 0 i) (String.sub s (i+1) (String.length s-i-1))) i
74
    | i -> remove_double_underscore s (i+1)
75
  in
76
  let name = if String.get name (base_size-1) == '_' then name^"ada" else name in
77
  let name = remove_double_underscore name 0 in
78
  let prefix = if String.length name != base_size
79
                  || String.get name 0 == '_' 
80
                  || List.exists (String.equal (String.lowercase_ascii name)) reserved_words then
81
                  "ada"
82
               else
83
                  ""
84
  in
85
  fprintf fmt "%s%s" prefix name
86

    
87
(** Encapsulate a pretty print function to lower case its result when applied
88
   @param pp the pretty print function
89
   @param fmt the formatter
90
   @param arg the argument of the pp function
91
**)
92
let pp_lowercase pp fmt =
93
  let str = asprintf "%t" pp in
94
  fprintf fmt "%s" (String. lowercase_ascii str)
95

    
96
(** Print a filename by lowercasing the base and appending an extension.
97
   @param extension the extension to append to the package name
98
   @param fmt the formatter
99
   @param pp_name the file base name printer
100
**)
101
let pp_filename extension fmt pp_name =
102
  fprintf fmt "%t.%s"
103
    (pp_lowercase pp_name)
104
    extension
105

    
106

    
107
(* Package pretty print functions *)
108

    
109
(** Return true if its the arrow machine
110
   @param machine the machine to test
111
*)
112
let is_arrow machine = String.equal Arrow.arrow_id machine.mname.node_id
113

    
114
(** Print the name of the arrow package.
115
   @param fmt the formater to print on
116
**)
117
let pp_arrow_package_name fmt = fprintf fmt "Arrow"
118

    
119
(** Print the name of a package associated to a machine.
120
   @param fmt the formater to print on
121
   @param machine the machine
122
**)
123
let pp_package_name fmt machine =
124
  if is_arrow machine then
125
      fprintf fmt "%t" pp_arrow_package_name
126
  else
127
      fprintf fmt "%a" pp_clean_ada_identifier machine.mname.node_id
128

    
129
(** Print the ada package introduction sentence it can be used for body and
130
declaration. Boolean parameter body should be true if it is a body delcaration.
131
   @param fmt the formater to print on
132
   @param fmt the formater to print on
133
   @param machine the machine
134
**)
135
let pp_begin_package body fmt machine =
136
  fprintf fmt "package %s%a is"
137
    (if body then "body " else "")
138
    pp_package_name machine
139

    
140
(** Print the ada package conclusion sentence.
141
   @param fmt the formater to print on
142
   @param machine the machine
143
**)
144
let pp_end_package fmt machine =
145
  fprintf fmt "end %a" pp_package_name machine
146

    
147
(** Print the access of an item from an other package.
148
   @param fmt the formater to print on
149
   @param package the package to use
150
   @param item the item which is accessed
151
**)
152
let pp_package_access fmt (package, item) =
153
  fprintf fmt "%t.%t" package item
154

    
155
(** Print the name of the main procedure.
156
   @param fmt the formater to print on
157
**)
158
let pp_main_procedure_name fmt =
159
  fprintf fmt "ada_main"
160

    
161
(** Print a with statement to include a package.
162
   @param fmt the formater to print on
163
   @param pp_pakage_name the package name printer
164
**)
165
let pp_private_with fmt pp_pakage_name =
166
  fprintf fmt "private with %t" pp_pakage_name
167

    
168
(** Print a with statement to include a package.
169
   @param fmt the formater to print on
170
   @param name the package name
171
**)
172
let pp_with fmt name =
173
  fprintf fmt "with %s" name
174

    
175
(** Print a with statement to include a machine.
176
   @param fmt the formater to print on
177
   @param machine the machine
178
**)
179
let pp_with_machine fmt machine =
180
  fprintf fmt "private with %a" pp_package_name machine
181

    
182
(** Extract a node from an instance.
183
   @param instance the instance
184
**)
185
let extract_node instance =
186
  let (_, (node, _)) = instance in
187
  match node.top_decl_desc with
188
    | Node nd         -> nd
189
    | _ -> assert false (*TODO*)
190

    
191
(** Extract from a machine list the one corresponding to the given instance.
192
      assume that the machine is in the list.
193
   @param machines list of all machines
194
   @param instance instance of a machine
195
   @return the machine corresponding to hte given instance
196
**)
197
let get_machine machines instance =
198
    let id = (extract_node instance).node_id in
199
    try
200
      List.find (function m -> m.mname.node_id=id) machines
201
    with
202
      Not_found -> assert false (*TODO*)
203

    
204

    
205
(* Type pretty print functions *)
206

    
207
(** Print a type declaration
208
   @param fmt the formater to print on
209
   @param pp_name a format printer which print the type name
210
   @param pp_value a format printer which print the type definition
211
**)
212
let pp_type_decl fmt (pp_name, pp_definition) =
213
  fprintf fmt "type %t is %t" pp_name pp_definition
214

    
215
(** Print a private type declaration
216
   @param fmt the formater to print on
217
   @param pp_name a format printer which print the type name
218
**)
219
let pp_private_type_decl fmt pp_name =
220
  let pp_definition fmt = fprintf fmt "private" in
221
  pp_type_decl fmt (pp_name, pp_definition)
222

    
223
(** Print a limited private type declaration
224
   @param fmt the formater to print on
225
   @param pp_name a format printer which print the type name
226
**)
227
let pp_private_limited_type_decl fmt pp_name =
228
  let pp_definition fmt = fprintf fmt "limited private" in
229
  pp_type_decl fmt (pp_name, pp_definition)
230

    
231
(** Print the type of the state variable.
232
   @param fmt the formater to print on
233
**)
234
let pp_state_type fmt =
235
  (* Type and variable names live in the same environement in Ada so name of
236
     this type and of the associated parameter : pp_state_name must be
237
     different *)
238
  fprintf fmt "TState"
239

    
240
(** Print the integer type name.
241
   @param fmt the formater to print on
242
**)
243
let pp_integer_type fmt = fprintf fmt "Integer"
244

    
245
(** Print the float type name.
246
   @param fmt the formater to print on
247
**)
248
let pp_float_type fmt = fprintf fmt "Float"
249

    
250
(** Print the boolean type name.
251
   @param fmt the formater to print on
252
**)
253
let pp_boolean_type fmt = fprintf fmt "Boolean"
254

    
255
(** Print the type of a polymorphic type.
256
   @param fmt the formater to print on
257
   @param id the id of the polymorphic type
258
**)
259
let pp_polymorphic_type fmt id =
260
  fprintf fmt "T_%i" id
261

    
262
(** Print a type.
263
   @param fmt the formater to print on
264
   @param type the type
265
**)
266
let pp_type fmt typ = 
267
  (match (Types.repr typ).Types.tdesc with
268
    | Types.Tbasic Types.Basic.Tint  -> pp_integer_type fmt
269
    | Types.Tbasic Types.Basic.Treal -> pp_float_type fmt
270
    | Types.Tbasic Types.Basic.Tbool -> pp_boolean_type fmt
271
    | Types.Tunivar                  -> pp_polymorphic_type fmt typ.Types.tid
272
    | Types.Tbasic _                 -> eprintf "Tbasic@."; assert false (*TODO*)
273
    | Types.Tconst _                 -> eprintf "Tconst@."; assert false (*TODO*)
274
    | Types.Tclock _                 -> eprintf "Tclock@."; assert false (*TODO*)
275
    | Types.Tarrow _                 -> eprintf "Tarrow@."; assert false (*TODO*)
276
    | Types.Ttuple l                 -> eprintf "Ttuple %a @." (Utils.fprintf_list ~sep:" " Types.print_ty) l; assert false (*TODO*)
277
    | Types.Tenum _                  -> eprintf "Tenum@.";  assert false (*TODO*)
278
    | Types.Tstruct _                -> eprintf "Tstruct@.";assert false (*TODO*)
279
    | Types.Tarray _                 -> eprintf "Tarray@."; assert false (*TODO*)
280
    | Types.Tstatic _                -> eprintf "Tstatic@.";assert false (*TODO*)
281
    | Types.Tlink _                  -> eprintf "Tlink@.";  assert false (*TODO*)
282
    | Types.Tvar                     -> eprintf "Tvar@.";   assert false (*TODO*)
283
    (*| _ -> eprintf "Type error : %a@." Types.print_ty typ; assert false *)
284
  )
285

    
286
(** Return a default ada constant for a given type.
287
   @param cst_typ the constant type
288
**)
289
let default_ada_cst cst_typ = match cst_typ with
290
  | Types.Basic.Tint  -> Const_int 0
291
  | Types.Basic.Treal -> Const_real (Num.num_of_int 0, 0, "0.0")
292
  | Types.Basic.Tbool -> Const_tag tag_false
293
  | _ -> assert false
294

    
295
(** Make a default value from a given type.
296
   @param typ the type
297
**)
298
let mk_default_value typ =
299
  match (Types.repr typ).Types.tdesc with
300
    | Types.Tbasic t  -> mk_val (Cst (default_ada_cst t)) typ
301
    | _                              -> assert false (*TODO*)
302

    
303
(** Test if two types are the same.
304
   @param typ1 the first type
305
   @param typ2 the second type
306
**)
307
let pp_eq_type typ1 typ2 = 
308
  let get_basic typ = match (Types.repr typ).Types.tdesc with
309
    | Types.Tbasic Types.Basic.Tint -> Types.Basic.Tint
310
    | Types.Tbasic Types.Basic.Treal -> Types.Basic.Treal
311
    | Types.Tbasic Types.Basic.Tbool -> Types.Basic.Tbool
312
    | _ -> assert false (*TODO*)
313
  in
314
  get_basic typ1 = get_basic typ2
315

    
316

    
317
(** Print the type of a variable.
318
   @param fmt the formater to print on
319
   @param id the variable
320
**)
321
let pp_var_type fmt id = 
322
  pp_type fmt id.var_type
323

    
324
(** Extract all the inputs and outputs.
325
   @param machine the machine
326
   @return a list of all the var_decl of a macine
327
**)
328
let get_all_vars_machine m =
329
  m.mmemory@m.mstep.step_inputs@m.mstep.step_outputs@m.mstatic
330

    
331
(** Check if a type is polymorphic.
332
   @param typ the type
333
   @return true if its polymorphic
334
**)
335
let is_Tunivar typ = (Types.repr typ).tdesc == Types.Tunivar
336

    
337
(** Find all polymorphic type : Types.Tunivar in a machine.
338
   @param machine the machine
339
   @return a list of id corresponding to polymorphic type
340
**)
341
let find_all_polymorphic_type m =
342
  let vars = get_all_vars_machine m in
343
  let extract id = id.var_type.tid in
344
  let polymorphic_type_vars =
345
    List.filter (function x-> is_Tunivar x.var_type) vars in
346
  List.sort_uniq (-) (List.map extract polymorphic_type_vars)
347

    
348
(** Print a package name with polymorphic types specified.
349
   @param substitution correspondance between polymorphic type id and their instantiation
350
   @param fmt the formater to print on
351
   @param machine the machine
352
**)
353
let pp_package_name_with_polymorphic substitution fmt machine =
354
  let polymorphic_types = find_all_polymorphic_type machine in
355
  assert(List.length polymorphic_types = List.length substitution);
356
  let substituion = List.sort_uniq (fun x y -> fst x - fst y) substitution in
357
  assert(List.for_all2 (fun poly1 (poly2, _) -> poly1 = poly2)
358
            polymorphic_types substituion);
359
  let instantiated_types = snd (List.split substitution) in
360
  fprintf fmt "%a%t%a"
361
    pp_package_name machine
362
    (Utils.pp_final_char_if_non_empty "_" instantiated_types)
363
    (Utils.fprintf_list ~sep:"_" pp_type) instantiated_types
364

    
365

    
366
(* Variable pretty print functions *)
367

    
368
(** Represent the possible mode for a type of a procedure parameter **)
369
type parameter_mode = NoMode | In | Out | InOut
370

    
371
(** Print a parameter_mode.
372
   @param fmt the formater to print on
373
   @param mode the modifier
374
**)
375
let pp_parameter_mode fmt mode =
376
  fprintf fmt "%s" (match mode with
377
                     | NoMode -> ""
378
                     | In     -> "in"
379
                     | Out    -> "out"
380
                     | InOut  -> "in out")
381

    
382
(** Print the name of the state variable.
383
   @param fmt the formater to print on
384
**)
385
let pp_state_name fmt =
386
  fprintf fmt "state"
387

    
388

    
389
(** Print the name of a variable.
390
   @param fmt the formater to print on
391
   @param id the variable
392
**)
393
let pp_var_name fmt id =
394
  fprintf fmt "%a" pp_clean_ada_identifier id.var_id
395

    
396
(** Print the complete name of variable.
397
   @param m the machine to check if it is memory
398
   @param fmt the formater to print on
399
   @param var the variable
400
**)
401
let pp_access_var m fmt var =
402
  if is_memory m var then
403
    fprintf fmt "%t.%a" pp_state_name pp_var_name var
404
  else
405
    pp_var_name fmt var
406

    
407
(** Print a variable declaration
408
   @param mode input/output mode of the parameter
409
   @param pp_name a format printer wich print the variable name
410
   @param pp_type a format printer wich print the variable type
411
   @param fmt the formater to print on
412
   @param id the variable
413
**)
414
let pp_var_decl fmt (mode, pp_name, pp_type) =
415
  fprintf fmt "%t: %a%s%t"
416
    pp_name
417
    pp_parameter_mode mode
418
    (if mode = NoMode then "" else " ")
419
    pp_type
420

    
421
(** Print variable declaration for machine variable
422
   @param mode input/output mode of the parameter
423
   @param fmt the formater to print on
424
   @param id the variable
425
**)
426
let pp_machine_var_decl mode fmt id =
427
  let pp_name = function fmt -> pp_var_name fmt id in
428
  let pp_type = function fmt -> pp_var_type fmt id in
429
  pp_var_decl fmt (mode, pp_name, pp_type)
430

    
431
(** Print variable declaration for a local state variable
432
   @param fmt the formater to print on
433
   @param mode input/output mode of the parameter
434
**)
435
let pp_state_var_decl fmt mode =
436
  let pp_name = pp_state_name in
437
  let pp_type = pp_state_type in
438
  pp_var_decl fmt (mode, pp_name, pp_type)
439

    
440
(** Print the declaration of a state element of a machine.
441
   @param substitution correspondance between polymorphic type id and their instantiation
442
   @param name name of the variable
443
   @param fmt the formater to print on
444
   @param machine the machine
445
**)
446
let pp_node_state_decl substitution name fmt machine =
447
  let pp_package fmt = pp_package_name_with_polymorphic substitution fmt machine in
448
  let pp_type fmt = pp_package_access fmt (pp_package, pp_state_type) in
449
  let pp_name fmt = pp_clean_ada_identifier fmt name in
450
  pp_var_decl fmt (NoMode, pp_name, pp_type)
451

    
452

    
453
(* Prototype pretty print functions *)
454

    
455
(** Print the name of the reset procedure **)
456
let pp_reset_procedure_name fmt = fprintf fmt "reset"
457

    
458
(** Print the name of the step procedure **)
459
let pp_step_procedure_name fmt = fprintf fmt "step"
460

    
461
(** Print the name of the init procedure **)
462
let pp_init_procedure_name fmt = fprintf fmt "init"
463

    
464
(** Print the name of the clear procedure **)
465
let pp_clear_procedure_name fmt = fprintf fmt "clear"
466

    
467
(** Print the prototype of a procedure with non input/outputs
468
   @param fmt the formater to print on
469
   @param name the name of the procedure
470
**)
471
let pp_simple_prototype pp_name fmt =
472
  fprintf fmt "procedure %t" pp_name
473

    
474
(** Print the prototype of a machine procedure. The first parameter is always
475
the state, state_modifier specify the modifier applying to it. The next
476
parameters are inputs and the last parameters are the outputs.
477
   @param state_mode_opt None if no state parameter required and some input/output mode for it else
478
   @param input list of the input parameter of the procedure
479
   @param output list of the output parameter of the procedure
480
   @param fmt the formater to print on
481
   @param name the name of the procedure
482
**)
483
let pp_base_prototype state_mode_opt input output fmt pp_name =
484
  let pp_var_decl_state fmt = match state_mode_opt with
485
    | None -> fprintf fmt ""
486
    | Some state_mode -> fprintf fmt "%a" pp_state_var_decl state_mode
487
  in
488
  fprintf fmt "procedure %t(@[<v>%t%t@[%a@]%t@[%a@])@]"
489
    pp_name
490
    pp_var_decl_state
491
    (fun fmt -> if state_mode_opt != None && input!=[] then
492
      fprintf fmt ";@," else fprintf fmt "")
493
    (Utils.fprintf_list ~sep:";@ " (pp_machine_var_decl In)) input
494
    (fun fmt -> if (state_mode_opt != None || input!=[]) && output != [] then
495
      fprintf fmt ";@," else fprintf fmt "")
496
    (Utils.fprintf_list ~sep:";@ " (pp_machine_var_decl Out)) output
497

    
498
(** Print the prototype of the step procedure of a machine.
499
   @param m the machine
500
   @param fmt the formater to print on
501
   @param pp_name name function printer
502
**)
503
let pp_step_prototype m fmt =
504
  let state_mode = if is_machine_statefull m then Some InOut else None in
505
  pp_base_prototype state_mode m.mstep.step_inputs m.mstep.step_outputs fmt pp_step_procedure_name
506

    
507
(** Print the prototype of the reset procedure of a machine.
508
   @param m the machine
509
   @param fmt the formater to print on
510
   @param pp_name name function printer
511
**)
512
let pp_reset_prototype m fmt =
513
  let state_mode = if is_machine_statefull m then Some Out else None in
514
  pp_base_prototype state_mode m.mstatic [] fmt pp_reset_procedure_name
515

    
516
(** Print the prototype of the init procedure of a machine.
517
   @param m the machine
518
   @param fmt the formater to print on
519
   @param pp_name name function printer
520
**)
521
let pp_init_prototype m fmt =
522
  let state_mode = if is_machine_statefull m then Some Out else None in
523
  pp_base_prototype state_mode m.mstatic [] fmt pp_init_procedure_name
524

    
525
(** Print the prototype of the clear procedure of a machine.
526
   @param m the machine
527
   @param fmt the formater to print on
528
   @param pp_name name function printer
529
**)
530
let pp_clear_prototype m fmt =
531
  let state_mode = if is_machine_statefull m then Some InOut else None in
532
  pp_base_prototype state_mode m.mstatic [] fmt pp_clear_procedure_name
533

    
534
(** Print a one line comment with the final new line character to avoid
535
      commenting anything else.
536
   @param fmt the formater to print on
537
   @param s the comment without newline character
538
**)
539
let pp_oneline_comment fmt s =
540
  assert (not (String.contains s '\n'));
541
  fprintf fmt "-- %s@," s
542

    
543

    
544
(* Functions which computes the substitution for polymorphic type *)
545

    
546
(** Check if a submachine is statefull.
547
    @param submachine a submachine
548
    @return true if the submachine is statefull
549
**)
550
let is_submachine_statefull submachine =
551
    not (snd (snd submachine)).mname.node_dec_stateless
552

    
553
(** Find a submachine step call in a list of instructions.
554
    @param ident submachine instance ident
555
    @param instr_list List of instruction sto search
556
    @return a list of pair containing input types and output types for each step call found
557
**)
558
let rec find_submachine_step_call ident instr_list =
559
  let search_instr instruction = 
560
    match instruction.instr_desc with
561
      | MStep (il, i, vl) when String.equal i ident -> [
562
        (List.map (function x-> x.value_type) vl,
563
            List.map (function x-> x.var_type) il)]
564
      | MBranch (_, l) -> List.flatten
565
          (List.map (function x, y -> find_submachine_step_call ident y) l)
566
      | _ -> []
567
  in
568
  List.flatten (List.map search_instr instr_list)
569

    
570
(** Check that two types are the same.
571
   @param t1 a type
572
   @param t2 an other type
573
   @param return true if the two types are Tbasic or Tunivar and equal
574
**)
575
let rec check_type_equal (t1:Types.type_expr) (t2:Types.type_expr) =
576
  match (Types.repr t1).Types.tdesc, (Types.repr t2).Types.tdesc with
577
    | Types.Tbasic x, Types.Tbasic y -> x = y
578
    | Types.Tunivar,  Types.Tunivar  -> t1.tid = t2.tid
579
    | Types.Ttuple l, _ -> assert (List.length l = 1); check_type_equal (List.hd l) t2
580
    | _, Types.Ttuple l -> assert (List.length l = 1); check_type_equal t1 (List.hd l)
581
    | Types.Tstatic (_, t), _ -> check_type_equal t t2
582
    | _, Types.Tstatic (_, t) -> check_type_equal t1 t
583
    | _ -> eprintf "ERROR: %a | %a" pp_type t1 pp_type t2; assert false (* TODO *)
584

    
585
(** Extend a substitution to unify the two given types. Only the
586
  first type can be polymorphic.
587
    @param subsitution the base substitution
588
    @param type_poly the type which can be polymorphic
589
    @param typ the type to match type_poly with
590
**)
591
let unification (substituion:(int*Types.type_expr) list) ((type_poly:Types.type_expr), (typ:Types.type_expr)) =
592
  assert(not (is_Tunivar typ));
593
  (* If type_poly is polymorphic *)
594
  if is_Tunivar type_poly then
595
    (* If a subsitution exists for it *)
596
    if List.mem_assoc type_poly.tid substituion then
597
    begin
598
      (* We check that the type corresponding to type_poly in the subsitution
599
         match typ *)
600
      (try
601
        assert(check_type_equal (List.assoc type_poly.tid substituion) typ)
602
      with
603
        Not_found -> assert false);
604
      (* We return the original substituion, it is already correct *)
605
      substituion
606
    end
607
    (* If type_poly is not in the subsitution *)
608
    else
609
      (* We add it to the substituion *)
610
      (type_poly.tid, typ)::substituion
611
  (* iftype_poly is not polymorphic *)
612
  else
613
  begin
614
    (* We check that type_poly and typ are the same *)
615
    assert(check_type_equal type_poly typ);
616
    (* We return the original substituion, it is already correct *)
617
    substituion
618
  end
619

    
620
(** Check that two calls are equal. A call is
621
  a pair of list of types, the inputs and the outputs.
622
   @param calls a list of pair of list of types
623
   @param return true if the two pairs are equal
624
**)
625
let check_call_equal (i1, o1) (i2, o2) =
626
  (List.for_all2 check_type_equal i1 i2)
627
    && (List.for_all2 check_type_equal i1 i2)
628

    
629
(** Check that all the elements of list of calls are equal to one.
630
  A call is a pair of list of types, the inputs and the outputs.
631
   @param call a pair of list of types
632
   @param calls a list of pair of list of types
633
   @param return true if all the elements are equal
634
**)
635
let check_calls call calls =
636
  List.for_all (check_call_equal call) calls
637

    
638
(** Extract from a subinstance that can have polymorphic type the instantiation
639
    of all its polymorphic type instanciation for a given machine. It searches
640
    the step calls and extract a substitution for all polymorphic type from
641
    it.
642
   @param machine the machine which instantiate the subinstance
643
   @param ident the identifier of the instance which permits to find the step call
644
   @param submachine the machine corresponding to the subinstance
645
   @return the correspondance between polymorphic type id and their instantiation
646
**)
647
let get_substitution machine ident submachine =
648
  (* extract the calls to submachines from the machine *)
649
  let calls = find_submachine_step_call ident machine.mstep.step_instrs in
650
  (* extract the first call  *)
651
  let call = match calls with
652
              (* assume that there is always one call to a subinstance *)
653
              | []    -> assert(false)
654
              | h::t  -> h in
655
  (* assume that all the calls to a subinstance are using the same type *)
656
  assert(check_calls call calls);
657
  (* make a list of all types from input and output vars *)
658
  let call_types = (fst call)@(snd call) in
659
  (* extract all the input and output vars from the submachine *)
660
  let machine_vars = submachine.mstep.step_inputs@submachine.mstep.step_outputs in
661
  (* keep only the type of vars *)
662
  let machine_types = List.map (function x-> x.var_type) machine_vars in
663
  (* assume that there is the same numer of input and output in the submachine
664
      and the call *)
665
  assert (List.length machine_types = List.length call_types);
666
  (* Unify the two lists of types *)
667
  let substitution = List.fold_left unification [] (List.combine machine_types call_types) in
668
  (* Assume that our substitution match all the possible
669
       polymorphic type of the node *)
670
  let polymorphic_types = find_all_polymorphic_type submachine in
671
  assert (List.length polymorphic_types = List.length substitution);
672
  (try
673
    assert (List.for_all (fun x -> List.mem_assoc x substitution) polymorphic_types)
674
  with
675
    Not_found -> assert false);
676
  substitution
677

    
678

    
679
(* Procedure pretty print functions *)
680

    
681
let pp_block pp_item fmt items =
682
  fprintf fmt "  @[<v>%a%t@]@,"
683
    (Utils.fprintf_list ~sep:";@," pp_item) items
684
    (Utils.pp_final_char_if_non_empty ";" items)
685

    
686
(** Print the definition of a procedure
687
   @param pp_name the procedure name printer
688
   @param pp_prototype the prototype printer
689
   @param pp_instr local var printer
690
   @param pp_instr instruction printer
691
   @param fmt the formater to print on
692
   @param locals locals var list
693
   @param instrs instructions list
694
**)
695
let pp_procedure_definition pp_name pp_prototype pp_local pp_instr fmt (locals, instrs) =
696
  fprintf fmt "@[<v>%t is@,%abegin@,%aend %t@]"
697
    pp_prototype
698
    (pp_block pp_local) locals
699
    (pp_block pp_instr) instrs
700
    pp_name
701

    
702

    
703
(* Expression print functions *)
704

    
705
  (* Printing functions for basic operations and expressions *)
706
  (* TODO: refactor code -> use let rec and for basic pretty printing
707
     function *)
708
  (** Printing function for Ada tags, mainly booleans.
709

    
710
      @param fmt the formater to use
711
      @param t the tag to print
712
   **)
713
  let pp_ada_tag fmt t =
714
    pp_print_string fmt
715
      (if t = tag_true then "True" else if t = tag_false then "False" else t)
716

    
717
  (** Printing function for machine type constants. For the moment,
718
      arrays are not supported.
719

    
720
      @param fmt the formater to use
721
      @param c the constant to print
722
   **)
723
  let pp_ada_const fmt c =
724
    match c with
725
    | Const_int i                     -> pp_print_int fmt i
726
    | Const_real (c, e, s)            ->
727
        fprintf fmt "%s.0*1.0e-%i" (Num.string_of_num c) e
728
    | Const_tag t                     -> pp_ada_tag fmt t
729
    | Const_string _ | Const_modeid _ ->
730
      (Format.eprintf
731
         "internal error: Ada_backend_adb.pp_ada_const cannot print string or modeid.";
732
       assert false)
733
    | _                               ->
734
      raise (Ada_not_supported "unsupported: Ada_backend_adb.pp_ada_const does not
735
      support this constant")
736

    
737
  (** Printing function for expressions [v1 modulo v2]. Depends
738
      on option [integer_div_euclidean] to choose between mathematical
739
      modulo or remainder ([rem] in Ada).
740

    
741
      @param pp_value pretty printer for values
742
      @param v1 the first value in the expression
743
      @param v2 the second value in the expression
744
      @param fmt the formater to print on
745
   **)
746
  let pp_mod pp_value v1 v2 fmt =
747
    if !Options.integer_div_euclidean then
748
      (* (a rem b) + (a rem b < 0 ? abs(b) : 0) *)
749
      Format.fprintf fmt
750
        "((%a rem %a) + (if (%a rem %a) < 0 then abs(%a) else 0))"
751
        pp_value v1 pp_value v2
752
        pp_value v1 pp_value v2
753
        pp_value v2
754
    else (* Ada behavior for rem *)
755
      Format.fprintf fmt "(%a rem %a)" pp_value v1 pp_value v2
756

    
757
  (** Printing function for expressions [v1 div v2]. Depends on
758
      option [integer_div_euclidean] to choose between mathematic
759
      division or Ada division.
760

    
761
      @param pp_value pretty printer for values
762
      @param v1 the first value in the expression
763
      @param v2 the second value in the expression
764
      @param fmt the formater to print in
765
   **)
766
  let pp_div pp_value v1 v2 fmt =
767
    if !Options.integer_div_euclidean then
768
      (* (a - ((a rem b) + (if a rem b < 0 then abs (b) else 0))) / b) *)
769
      Format.fprintf fmt "(%a - %t) / %a"
770
        pp_value v1
771
        (pp_mod pp_value v1 v2)
772
        pp_value v2
773
    else (* Ada behavior for / *)
774
      Format.fprintf fmt "(%a / %a)" pp_value v1 pp_value v2
775

    
776
  (** Printing function for basic lib functions.
777

    
778
      @param pp_value pretty printer for values
779
      @param i a string representing the function
780
      @param fmt the formater to print on
781
      @param vl the list of operands
782
   **)
783
  let pp_basic_lib_fun pp_value ident fmt vl =
784
    match ident, vl with
785
    | "uminus", [v]    ->
786
      Format.fprintf fmt "(- %a)" pp_value v
787
    | "not", [v]       ->
788
      Format.fprintf fmt "(not %a)" pp_value v
789
    | "impl", [v1; v2] ->
790
      Format.fprintf fmt "(not %a or else %a)" pp_value v1 pp_value v2
791
    | "=", [v1; v2]    ->
792
      Format.fprintf fmt "(%a = %a)" pp_value v1 pp_value v2
793
    | "mod", [v1; v2]  -> pp_mod pp_value v1 v2 fmt
794
    | "equi", [v1; v2] ->
795
      Format.fprintf fmt "((not %a) = (not %a))" pp_value v1 pp_value v2
796
    | "xor", [v1; v2]  ->
797
      Format.fprintf fmt "((not %a) /= (not %a))" pp_value v1 pp_value v2
798
    | "/", [v1; v2]    -> pp_div pp_value v1 v2 fmt
799
    | "&&", [v1; v2]    ->
800
      Format.fprintf fmt "(%a %s %a)" pp_value v1 "and then" pp_value v2
801
    | "||", [v1; v2]    ->
802
      Format.fprintf fmt "(%a %s %a)" pp_value v1 "or else" pp_value v2
803
    | "!=", [v1; v2]    ->
804
      Format.fprintf fmt "(%a %s %a)" pp_value v1 "/=" pp_value v2
805
    | op, [v1; v2]     ->
806
      Format.fprintf fmt "(%a %s %a)" pp_value v1 op pp_value v2
807
    | op, [v1] when  List.mem_assoc ident ada_supported_funs ->
808
      let pkg, name = try List.assoc ident ada_supported_funs
809
        with Not_found -> assert false in
810
      let pkg = pkg^(if String.equal pkg "" then "" else ".") in
811
        Format.fprintf fmt "%s%s(%a)" pkg name pp_value v1
812
    | fun_name, _      ->
813
      (Format.eprintf "internal compilation error: basic function %s@." fun_name; assert false)
814

    
815
  (** Printing function for values.
816

    
817
      @param m the machine to know the state variable
818
      @param fmt the formater to use
819
      @param value the value to print. Should be a
820
             {!type:Machine_code_types.value_t} value
821
   **)
822
  let rec pp_value m fmt value =
823
    match value.value_desc with
824
    | Cst c             -> pp_ada_const fmt c
825
    | Var var      -> pp_access_var m fmt var
826
    | Fun (f_ident, vl) -> pp_basic_lib_fun (pp_value m) f_ident fmt vl
827
    | _                 ->
828
      raise (Ada_not_supported
829
               "unsupported: Ada_backend.adb.pp_value does not support this value type")
830

    
831

    
832
(** Print the filename of a machine package.
833
   @param extension the extension to append to the package name
834
   @param fmt the formatter
835
   @param machine the machine corresponding to the package
836
**)
837
let pp_machine_filename extension fmt machine =
838
  pp_filename extension fmt (function fmt -> pp_package_name fmt machine)
839

    
840
let pp_main_filename fmt _ = pp_filename "adb" fmt pp_main_procedure_name
(5-5/6)