1

(********************************************************************)

2

(* *)

3

(* The LustreC compiler toolset / The LustreC Development Team *)

4

(* Copyright 2012   ONERA  CNRS  INPT *)

5

(* *)

6

(* LustreC is free software, distributed WITHOUT ANY WARRANTY *)

7

(* under the terms of the GNU Lesser General Public License *)

8

(* version 2.1. *)

9

(* *)

10

(********************************************************************)

11


12

open Utils

13

open LustreSpec

14

open Corelang

15

open Format

16


17

let expr_true loc ck =

18

{ expr_tag = Utils.new_tag ();

19

expr_desc = Expr_const (Const_tag tag_true);

20

expr_type = Type_predef.type_bool;

21

expr_clock = ck;

22

expr_delay = Delay.new_var ();

23

expr_annot = None;

24

expr_loc = loc }

25


26

let expr_false loc ck =

27

{ expr_tag = Utils.new_tag ();

28

expr_desc = Expr_const (Const_tag tag_false);

29

expr_type = Type_predef.type_bool;

30

expr_clock = ck;

31

expr_delay = Delay.new_var ();

32

expr_annot = None;

33

expr_loc = loc }

34


35

let expr_once loc ck =

36

{ expr_tag = Utils.new_tag ();

37

expr_desc = Expr_arrow (expr_true loc ck, expr_false loc ck);

38

expr_type = Type_predef.type_bool;

39

expr_clock = ck;

40

expr_delay = Delay.new_var ();

41

expr_annot = None;

42

expr_loc = loc }

43


44

let is_expr_once =

45

let dummy_expr_once = expr_once Location.dummy_loc (Clocks.new_var true) in

46

fun expr > Corelang.is_eq_expr expr dummy_expr_once

47


48

let unfold_arrow expr =

49

match expr.expr_desc with

50

 Expr_arrow (e1, e2) >

51

let loc = expr.expr_loc in

52

let ck = List.hd (Clocks.clock_list_of_clock expr.expr_clock) in

53

{ expr with expr_desc = Expr_ite (expr_once loc ck, e1, e2) }

54

 _ > assert false

55


56

let unfold_arrow_active = ref true

57

let cpt_fresh = ref 0

58


59

(* Generate a new local [node] variable *)

60

let mk_fresh_var node loc ty ck =

61

let vars = get_node_vars node in

62

let rec aux () =

63

incr cpt_fresh;

64

let s = Printf.sprintf "__%s_%d" node.node_id !cpt_fresh in

65

if List.exists (fun v > v.var_id = s) vars then aux () else

66

{

67

var_id = s;

68

var_orig = false;

69

var_dec_type = dummy_type_dec;

70

var_dec_clock = dummy_clock_dec;

71

var_dec_const = false;

72

var_dec_value = None;

73

var_type = ty;

74

var_clock = ck;

75

var_loc = loc

76

}

77

in aux ()

78


79

(* Get the equation in [defs] with [expr] as rhs, if any *)

80

let get_expr_alias defs expr =

81

try Some (List.find (fun eq > is_eq_expr eq.eq_rhs expr) defs)

82

with

83

Not_found > None

84


85

(* Replace [expr] with (tuple of) [locals] *)

86

let replace_expr locals expr =

87

match locals with

88

 [] > assert false

89

 [v] > { expr with

90

expr_tag = Utils.new_tag ();

91

expr_desc = Expr_ident v.var_id }

92

 _ > { expr with

93

expr_tag = Utils.new_tag ();

94

expr_desc = Expr_tuple (List.map expr_of_vdecl locals) }

95


96

let unfold_offsets e offsets =

97

let add_offset e d =

98

(*Format.eprintf "add_offset %a(%a) %a @." Printers.pp_expr e Types.print_ty e.expr_type Dimension.pp_dimension d;

99

let res = *)

100

{ e with

101

expr_tag = Utils.new_tag ();

102

expr_loc = d.Dimension.dim_loc;

103

expr_type = Types.array_element_type e.expr_type;

104

expr_desc = Expr_access (e, d) }

105

(*in (Format.eprintf "= %a @." Printers.pp_expr res; res) *)

106

in

107

List.fold_left add_offset e offsets

108


109

(* Create an alias for [expr], if none exists yet *)

110

let mk_expr_alias node (defs, vars) expr =

111

(*Format.eprintf "mk_expr_alias %a %a %a@." Printers.pp_expr expr Types.print_ty expr.expr_type Clocks.print_ck expr.expr_clock;*)

112

match get_expr_alias defs expr with

113

 Some eq >

114

let aliases = List.map (fun id > List.find (fun v > v.var_id = id) vars) eq.eq_lhs in

115

(defs, vars), replace_expr aliases expr

116

 None >

117

let new_aliases =

118

List.map2

119

(mk_fresh_var node expr.expr_loc)

120

(Types.type_list_of_type expr.expr_type)

121

(Clocks.clock_list_of_clock expr.expr_clock) in

122

let new_def =

123

mkeq expr.expr_loc (List.map (fun v > v.var_id) new_aliases, expr)

124

in

125

(* Format.eprintf "Checking def of alias: %a > %a@." (fprintf_list ~sep:", " (fun fmt v > Format.pp_print_string fmt v.var_id)) new_aliases Printers.pp_expr expr; *)

126

(new_def::defs, new_aliases@vars), replace_expr new_aliases expr

127


128

(* Create an alias for [expr], if [expr] is not already an alias (i.e. an ident)

129

and [opt] is true *)

130

let mk_expr_alias_opt opt node defvars expr =

131

match expr.expr_desc with

132

 Expr_ident alias >

133

defvars, expr

134

 _ >

135

if opt

136

then

137

mk_expr_alias node defvars expr

138

else

139

defvars, expr

140


141

(* Create a (normalized) expression from [ref_e],

142

replacing description with [norm_d],

143

taking propagated [offsets] into account

144

in order to change expression type *)

145

let mk_norm_expr offsets ref_e norm_d =

146

(*Format.eprintf "mk_norm_expr %a %a @." Printers.pp_expr ref_e Printers.pp_expr { ref_e with expr_desc = norm_d};*)

147

let drop_array_type ty =

148

Types.map_tuple_type Types.array_element_type ty in

149

{ ref_e with

150

expr_desc = norm_d;

151

expr_type = Utils.repeat (List.length offsets) drop_array_type ref_e.expr_type }

152


153

(* normalize_<foo> : defs * used vars > <foo> > (updated defs * updated vars) * normalized <foo> *)

154

let rec normalize_list alias node offsets norm_element defvars elist =

155

List.fold_right

156

(fun t (defvars, qlist) >

157

let defvars, norm_t = norm_element alias node offsets defvars t in

158

(defvars, norm_t :: qlist)

159

) elist (defvars, [])

160


161

let rec normalize_expr ?(alias=true) node offsets defvars expr =

162

(* Format.eprintf "normalize %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*)

163

match expr.expr_desc with

164

 Expr_const _

165

 Expr_ident _ > defvars, unfold_offsets expr offsets

166

 Expr_array elist >

167

let defvars, norm_elist = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars elist in

168

let norm_expr = mk_norm_expr offsets expr (Expr_array norm_elist) in

169

mk_expr_alias_opt alias node defvars norm_expr

170

 Expr_power (e1, d) when offsets = [] >

171

let defvars, norm_e1 = normalize_expr node offsets defvars e1 in

172

let norm_expr = mk_norm_expr offsets expr (Expr_power (norm_e1, d)) in

173

mk_expr_alias_opt alias node defvars norm_expr

174

 Expr_power (e1, d) >

175

normalize_expr ~alias:alias node (List.tl offsets) defvars e1

176

 Expr_access (e1, d) >

177

normalize_expr ~alias:alias node (d::offsets) defvars e1

178

 Expr_tuple elist >

179

let defvars, norm_elist =

180

normalize_list alias node offsets (fun alias > normalize_expr ~alias:alias) defvars elist in

181

defvars, mk_norm_expr offsets expr (Expr_tuple norm_elist)

182

 Expr_appl (id, args, None)

183

when Basic_library.is_internal_fun id

184

&& Types.is_array_type expr.expr_type >

185

let defvars, norm_args =

186

normalize_list

187

alias

188

node

189

offsets

190

(fun _ > normalize_array_expr ~alias:true)

191

defvars

192

(expr_list_of_expr args)

193

in

194

defvars, mk_norm_expr offsets expr (Expr_appl (id, expr_of_expr_list args.expr_loc norm_args, None))

195

 Expr_appl (id, args, None) when Basic_library.is_internal_fun id >

196

let defvars, norm_args = normalize_expr ~alias:true node offsets defvars args in

197

defvars, mk_norm_expr offsets expr (Expr_appl (id, norm_args, None))

198

 Expr_appl (id, args, r) >

199

let defvars, norm_args = normalize_expr node [] defvars args in

200

let norm_expr = mk_norm_expr [] expr (Expr_appl (id, norm_args, r)) in

201

if offsets <> []

202

then

203

let defvars, norm_expr = normalize_expr node [] defvars norm_expr in

204

normalize_expr ~alias:alias node offsets defvars norm_expr

205

else

206

mk_expr_alias_opt (alias && not (Basic_library.is_internal_fun id)) node defvars norm_expr

207

 Expr_arrow (e1,e2) when !unfold_arrow_active && not (is_expr_once expr) > (* Here we differ from Colaco paper: arrows are pushed to the top *)

208

normalize_expr ~alias:alias node offsets defvars (unfold_arrow expr)

209

 Expr_arrow (e1,e2) >

210

let defvars, norm_e1 = normalize_expr node offsets defvars e1 in

211

let defvars, norm_e2 = normalize_expr node offsets defvars e2 in

212

let norm_expr = mk_norm_expr offsets expr (Expr_arrow (norm_e1, norm_e2)) in

213

mk_expr_alias_opt alias node defvars norm_expr

214

 Expr_pre e >

215

let defvars, norm_e = normalize_expr node offsets defvars e in

216

let norm_expr = mk_norm_expr offsets expr (Expr_pre norm_e) in

217

mk_expr_alias_opt alias node defvars norm_expr

218

 Expr_fby (e1, e2) >

219

let defvars, norm_e1 = normalize_expr node offsets defvars e1 in

220

let defvars, norm_e2 = normalize_expr node offsets defvars e2 in

221

let norm_expr = mk_norm_expr offsets expr (Expr_fby (norm_e1, norm_e2)) in

222

mk_expr_alias_opt alias node defvars norm_expr

223

 Expr_when (e, c, l) >

224

let defvars, norm_e = normalize_expr node offsets defvars e in

225

defvars, mk_norm_expr offsets expr (Expr_when (norm_e, c, l))

226

 Expr_ite (c, t, e) >

227

let defvars, norm_c = normalize_guard node defvars c in

228

let defvars, norm_t = normalize_cond_expr node offsets defvars t in

229

let defvars, norm_e = normalize_cond_expr node offsets defvars e in

230

let norm_expr = mk_norm_expr offsets expr (Expr_ite (norm_c, norm_t, norm_e)) in

231

mk_expr_alias_opt alias node defvars norm_expr

232

 Expr_merge (c, hl) >

233

let defvars, norm_hl = normalize_branches node offsets defvars hl in

234

let norm_expr = mk_norm_expr offsets expr (Expr_merge (c, norm_hl)) in

235

mk_expr_alias_opt alias node defvars norm_expr

236


237

(* Creates a conditional with a merge construct, which is more lazy *)

238

(*

239

let norm_conditional_as_merge alias node norm_expr offsets defvars expr =

240

match expr.expr_desc with

241

 Expr_ite (c, t, e) >

242

let defvars, norm_t = norm_expr (alias node offsets defvars t in

243

 _ > assert false

244

*)

245

and normalize_branches node offsets defvars hl =

246

List.fold_right

247

(fun (t, h) (defvars, norm_q) >

248

let (defvars, norm_h) = normalize_cond_expr node offsets defvars h in

249

defvars, (t, norm_h) :: norm_q

250

)

251

hl (defvars, [])

252


253

and normalize_array_expr ?(alias=true) node offsets defvars expr =

254

(* Format.eprintf "normalize_array %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*)

255

match expr.expr_desc with

256

 Expr_power (e1, d) when offsets = [] >

257

let defvars, norm_e1 = normalize_expr node offsets defvars e1 in

258

defvars, mk_norm_expr offsets expr (Expr_power (norm_e1, d))

259

 Expr_power (e1, d) >

260

normalize_array_expr ~alias:alias node (List.tl offsets) defvars e1

261

 Expr_access (e1, d) > normalize_array_expr ~alias:alias node (d::offsets) defvars e1

262

 Expr_array elist when offsets = [] >

263

let defvars, norm_elist = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars elist in

264

defvars, mk_norm_expr offsets expr (Expr_array norm_elist)

265

 Expr_appl (id, args, None) when Basic_library.is_internal_fun id >

266

let defvars, norm_args = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars (expr_list_of_expr args) in

267

defvars, mk_norm_expr offsets expr (Expr_appl (id, expr_of_expr_list args.expr_loc norm_args, None))

268

 _ > normalize_expr ~alias:alias node offsets defvars expr

269


270

and normalize_cond_expr ?(alias=true) node offsets defvars expr =

271

(*Format.eprintf "normalize_cond %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*)

272

match expr.expr_desc with

273

 Expr_access (e1, d) >

274

normalize_cond_expr ~alias:alias node (d::offsets) defvars e1

275

 Expr_ite (c, t, e) >

276

let defvars, norm_c = normalize_guard node defvars c in

277

let defvars, norm_t = normalize_cond_expr node offsets defvars t in

278

let defvars, norm_e = normalize_cond_expr node offsets defvars e in

279

defvars, mk_norm_expr offsets expr (Expr_ite (norm_c, norm_t, norm_e))

280

 Expr_merge (c, hl) >

281

let defvars, norm_hl = normalize_branches node offsets defvars hl in

282

defvars, mk_norm_expr offsets expr (Expr_merge (c, norm_hl))

283

 _ > normalize_expr ~alias:alias node offsets defvars expr

284


285

and normalize_guard node defvars expr =

286

let defvars, norm_expr = normalize_expr node [] defvars expr in

287

mk_expr_alias_opt true node defvars norm_expr

288


289

(* outputs cannot be memories as well. If so, introduce new local variable.

290

*)

291

let decouple_outputs node defvars eq =

292

let rec fold_lhs defvars lhs tys cks =

293

match lhs, tys, cks with

294

 [], [], [] > defvars, []

295

 v::qv, t::qt, c::qc > let (defs_q, vars_q), lhs_q = fold_lhs defvars qv qt qc in

296

if List.exists (fun o > o.var_id = v) node.node_outputs

297

then

298

let newvar = mk_fresh_var node eq.eq_loc t c in

299

let neweq = mkeq eq.eq_loc ([v], expr_of_vdecl newvar) in

300

(neweq :: defs_q, newvar :: vars_q), newvar.var_id :: lhs_q

301

else

302

(defs_q, vars_q), v::lhs_q

303

 _ > assert false in

304

let defvars', lhs' =

305

fold_lhs

306

defvars

307

eq.eq_lhs

308

(Types.type_list_of_type eq.eq_rhs.expr_type)

309

(Clocks.clock_list_of_clock eq.eq_rhs.expr_clock) in

310

defvars', {eq with eq_lhs = lhs' }

311


312

let rec normalize_eq node defvars eq =

313

match eq.eq_rhs.expr_desc with

314

 Expr_pre _

315

 Expr_fby _ >

316

let (defvars', eq') = decouple_outputs node defvars eq in

317

let (defs', vars'), norm_rhs = normalize_expr ~alias:false node [] defvars' eq'.eq_rhs in

318

let norm_eq = { eq' with eq_rhs = norm_rhs } in

319

(norm_eq::defs', vars')

320

 Expr_array _ >

321

let (defs', vars'), norm_rhs = normalize_array_expr ~alias:false node [] defvars eq.eq_rhs in

322

let norm_eq = { eq with eq_rhs = norm_rhs } in

323

(norm_eq::defs', vars')

324

 Expr_appl (id, _, None) when Basic_library.is_internal_fun id && Types.is_array_type eq.eq_rhs.expr_type >

325

let (defs', vars'), norm_rhs = normalize_array_expr ~alias:false node [] defvars eq.eq_rhs in

326

let norm_eq = { eq with eq_rhs = norm_rhs } in

327

(norm_eq::defs', vars')

328

 Expr_appl _ >

329

let (defs', vars'), norm_rhs = normalize_expr ~alias:false node [] defvars eq.eq_rhs in

330

let norm_eq = { eq with eq_rhs = norm_rhs } in

331

(norm_eq::defs', vars')

332

 _ >

333

let (defs', vars'), norm_rhs = normalize_cond_expr ~alias:false node [] defvars eq.eq_rhs in

334

let norm_eq = { eq with eq_rhs = norm_rhs } in

335

norm_eq::defs', vars'

336


337

(** normalize_node node returns a normalized node,

338

ie.

339

 updated locals

340

 new equations

341



342

*)

343

let normalize_node node =

344

cpt_fresh := 0;

345

let inputs_outputs = node.node_inputs@node.node_outputs in

346

let is_local v =

347

List.for_all ((!=) v) inputs_outputs in

348

let orig_vars = inputs_outputs@node.node_locals in

349

let defs, vars =

350

List.fold_left (normalize_eq node) ([], orig_vars) (get_node_eqs node) in

351

(* Normalize the asserts *)

352

let vars, assert_defs, asserts =

353

List.fold_left (

354

fun (vars, def_accu, assert_accu) assert_ >

355

let assert_expr = assert_.assert_expr in

356

let (defs, vars'), expr =

357

normalize_expr

358

~alias:true

359

node

360

[] (* empty offset for arrays *)

361

([], vars) (* defvar only contains vars *)

362

assert_expr

363

in

364

(*Format.eprintf "New assert vars: %a@.@?" (fprintf_list ~sep:", " Printers.pp_var) vars';*)

365

vars', defs@def_accu, {assert_ with assert_expr = expr}::assert_accu

366

) (vars, [], []) node.node_asserts in

367

let new_locals = List.filter is_local vars in

368

(*Format.eprintf "New locals: %a@.@?" (fprintf_list ~sep:", " Printers.pp_var) new_locals;*)

369


370

let new_annots =

371

if !Options.traces then

372

begin

373

(* Compute traceability info:

374

 gather newly bound variables

375

 compute the associated expression without aliases

376

*)

377

let diff_vars = List.fold_left (fun accu v > if not (List.mem v node.node_locals) then v.var_id :: accu else accu ) [] new_locals in

378

let norm_traceability = {

379

annots = List.map (fun vid >

380

let eq =

381

try

382

List.find (fun eq > eq.eq_lhs = [vid]) (defs@assert_defs)

383

with Not_found > (Format.eprintf "var not found %s@." vid; assert false) in

384

let expr = substitute_expr ~open_pre:true diff_vars (defs@assert_defs) eq.eq_rhs in

385

let pair = mkeexpr expr.expr_loc (mkexpr expr.expr_loc (Expr_tuple [expr_of_ident vid expr.expr_loc; expr])) in

386

(["traceability"], pair)

387

) diff_vars;

388

annot_loc = Location.dummy_loc

389

}

390

in

391

norm_traceability::node.node_annot

392

end

393

else

394

node.node_annot

395

in

396


397

let node =

398

{ node with

399

node_locals = new_locals;

400

node_stmts = List.map (fun eq > Eq eq) (defs @ assert_defs);

401

node_asserts = asserts;

402

node_annot = new_annots;

403

}

404

in ((*Printers.pp_node Format.err_formatter node;*)

405

node

406

)

407


408


409

let normalize_decl decl =

410

match decl.top_decl_desc with

411

 Node nd >

412

let decl' = {decl with top_decl_desc = Node (normalize_node nd)} in

413

Hashtbl.replace Corelang.node_table nd.node_id decl';

414

decl'

415

 Open _  ImportedNode _  Const _  TypeDef _ > decl

416


417

let normalize_prog decls =

418

List.map normalize_decl decls

419


420

(* Local Variables: *)

421

(* compilecommand:"make C .." *)

422

(* End: *)
